

SSC138GS6

N-Channel Enhancement Mode MOSFET

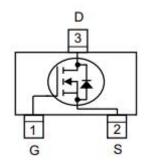
> Features

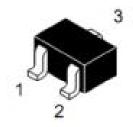
VDS	VGS	RDSON Typ.	ID
F0\/	+20V	2.5R@5V0	0.2A
50V	±20V	5.6R@2V75	U.ZA

Description

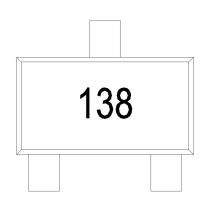
This N-Channel enhancement mode field effect transistors are produced using proprietary, high cell density. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. These products are particularly suited for low voltage, low current applications.

Applications


- Load Switch
- Motor control
- Power Mos gate drivers


Ordering Information

Device	Package	Shipping	
SSC138GS6	SOT23	3000/Reel	


Pin configuration

Top view

SOT23

Marking

Absolute Maximum Ratings(T_A=25 °C unless otherwise noted)

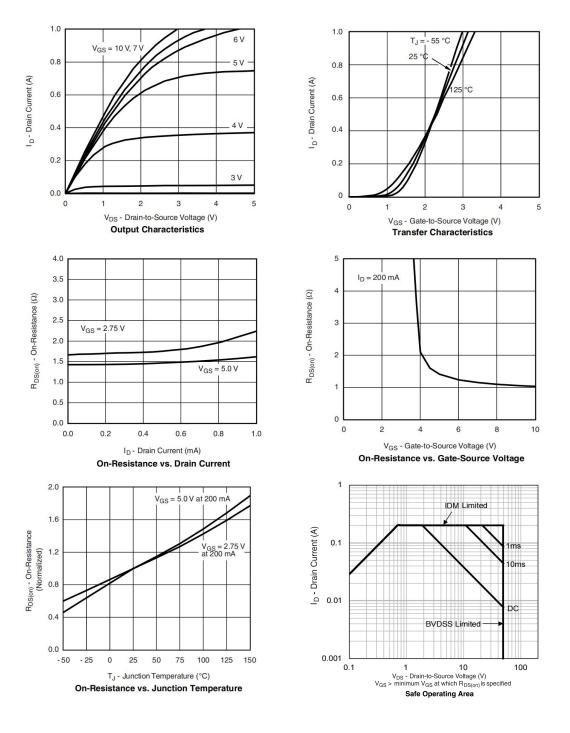
Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-to-Source Voltage	50	V
V _{GSS}	Gate-to-Source Voltage	±20	V
I _D	Continuous Drain Current	200	mA
I _{DM}	Pulsed Drain Current b	800	mA
P _D	Power Dissipation ^a	300	mW
TJ	Operation junction temperat	-55 to 150	℃
T _{STG}	Storage temperature rang	-55 to 150	℃

➤ Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
R _{θJA}	Junction-to-Ambient Thermal Resistance ^a		357	°C/W

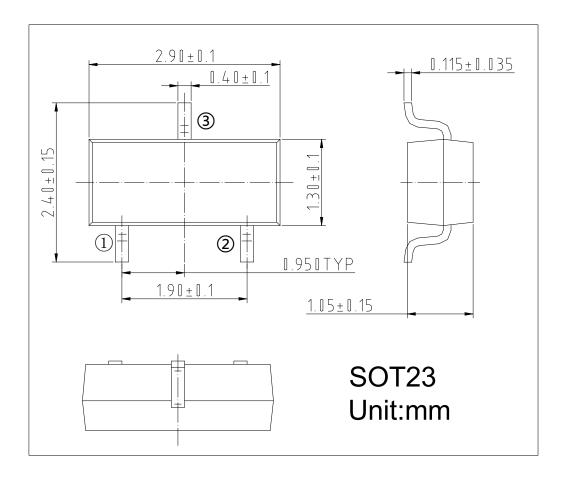
Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.

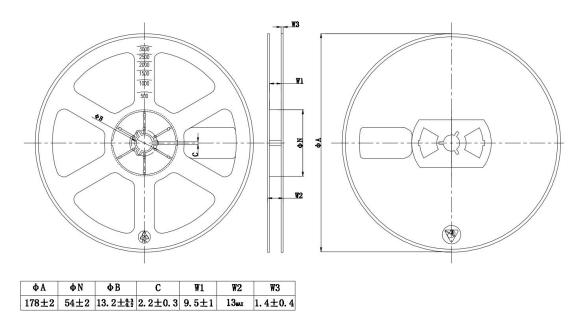


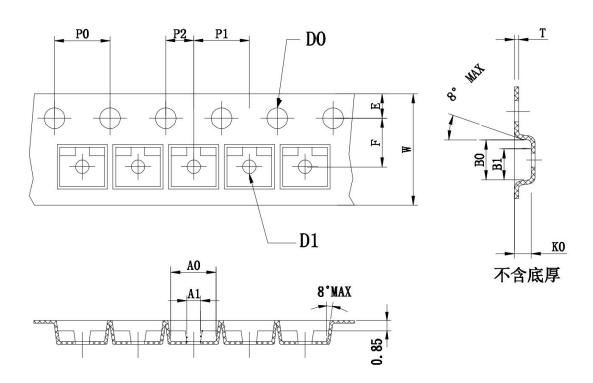
ightharpoonup **Electronics Characteristics**(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source	V _{GS} =0V,I _D =250uA	50			\ \
• (BIV)D33	Breakdown Voltage	. ,				
V _{GS (th)}	Gate Threshold	V _{DS} =V _{GS} ,I _D =250uA	0.5		1.5	V
V GS (till)	Voltage	V DS- V GS, ID-2004A	0.5		1.5	
D	Drain-Source	V _{GS} =5V,I _D =0.2A		2.5	3.5	
R _{DS(on)}	On-Resistance	V _{GS} =2.75V,I _D =0.2A		5.6	10	Ω
	Zero Gate Voltage	V _{DS} =25V,V _{GS} =0V			0.1	
I _{DSS}	Drain Current V _{DS} =50V,V _{GS} =0V				0.5	uA
	Gate-Source leak	V -120V/V -0V/			±100	nA
I _{GSS}	current	V _{GS} =±20V,V _{DS} =0V				
G _{FS}	Transconductance	V _{DS} =25V, I _D =0.2A, f =1.0kHz	100			mS
V _{SD}	Forward Voltage	V _{GS} =0V,I _S =0.2A		0.8	1.4	V
Ciss	Input Capacitance			42		
Coss	Output Capacitance	V _{DS} =25V, V _{GS} =0V, f=1MHz		12		pF
Crss	Reverse Transfer	VDS-20V, VGS-0V, I- HVII 12		4		Pi
	Capacitance			4		
T _{D(ON)}	Turn-on delay time	V_{DS} =30V, I_{D} =0.2A, R_{G} = 50 Ω			20	20
T _{D(OFF)}	Turn-off delay time	VDS-30V,ID-0.2A,ING - 3012			20	ns



Typical Characteristics(T_A=25[°]C unless otherwise noted)




> Package Information

Tape and Reel

Symbol	AO	A1	ВО	B1	KO	D0	D1	P0
Spec	3. 15±0. 10	1.15±0.10	2.80±0.10	2. 15±0. 10	1.30±0.10	1.55±0.10	1.10±0.10	4.00±0.10
Symbo1	P1	W	Е	P2	T	10*P0	F	
Spec	4.00±0.10	8.00±0.10	1.75±0.10	2.00±0.10	0.21±0.02	40.00±0.10	3.50±0.10	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.